Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let \mathbf{a} and \mathbf{b} be nonzero vectors. Under what conditions is $\operatorname{comp}_{\mathbf{a}} \mathbf{b}=\operatorname{comp}_{\mathbf{b}} \mathbf{a}$?
2. Let \mathbf{a} and \mathbf{b} be nonzero vectors. Under what conditions is $\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\operatorname{proj}_{\mathbf{b}} \mathbf{a}$?
3. Find an equation of the plane through the points $(3,0,-1),(-2,-2,3)$, and $(7,1,-4)$.
4. Find an equation of the plane that passes through the point $(3,5,-1)$ and contains the line $x=4-t, y=2 t-1$, and $z=-3 t$.
5. Reduce the following equation to one of the standard forms, classify the surface, and sketch it:

$$
x^{2}+y^{2}-2 x-6 y-z+10=0
$$

6. Reduce the following equation to one of the standard forms, classify the surface, and sketch it:

$$
x^{2}-y^{2}+z^{2}-4 x-2 z=0
$$

For problems 7 and 8, compute the following limits.
7. $\lim _{t \rightarrow 1}\left(\frac{t^{2}-t}{t-1} \mathbf{i}+\sqrt{t+8} \mathbf{j}+\frac{\sin (\pi t)}{\ln t} \mathbf{k}\right)$
8. $\lim _{t \rightarrow \infty}\left\langle t e^{-t}, \frac{t^{3}+t}{2 t^{3}-1}, t \sin \left(\frac{1}{t}\right)\right\rangle$

For problems 9 and 10, compute the unit tangent vector $\mathbf{T}(t)$ of $r(t)$ and the indicated point.
9. $r(t)=\left\langle t^{2}-2 t, 1+3 t, \sin (2 t)\right\rangle$ at the point $t=2$.
10. $r(t)=\left\langle\sin ^{2} t, \cos ^{2} t, \tan ^{2} t\right\rangle$ at the point $t=\frac{\pi}{4}$.

For problems 11 and 12, find the unit tangent vector, unit normal vector and the binormal vector; that is $\mathbf{T}(t), \mathbf{N}(t)$, and $\mathbf{B}(t)$ of the vector $\mathbf{r}(t)$.
11. $\mathbf{r}(t)=\langle\cos t, \sin t, t\rangle$.
12. $\mathbf{r}(t)=\left\langle t^{2}, \frac{2}{3} t^{3}, t\right\rangle$ at the point $\left(1, \frac{2}{3}, 1\right)$.
13. Find the curvature of the twisted cube $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$.

